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Appendix A

Outlier Detection when Training Data are Unlabeled

Stephan R. Sain, H. L. Gray, and Wayne A. Woodward
Department of Statistical Science

Southern Methodist University

ABSTRACT

We consider the difficult task of using seismic signals (or any other discriminants)
for detecting nuclear explosions from the large number of background signals such as
earthquakes and mining blasts. Wang et al. (1996) attack the problem in terms of outlier
detection, i.e. modeling the background as a mixture distribution and looking for outliers
(nuclear events) from that mixture. However, those authors only considered the case in

which at least some fraction of the training sample was labeled, i.e. ground truth was

available, and the number of distinct classes of events was known. In the current report,
we extend these results to the case in which no events in the training sample are labeled
and also to the case in which the number of event types represented in the training sample
is unknown. In order to accomplish this task, a preliminary clustering of the training
sample data is necessary. We also briefly consider the case in which some observations

in the training sample and in the potential outlier are missing.



1. Introduction

Monitoring a comprehensive test ban treaty involves the difficult problem of
differentiating the seismic signal of nuclear events from the large number of seismic
signals of earthquakes, mining explosions, etc. This problem is made even more difficult
due to the lack of information concerning the behavior of nuclear signals in many regions
of the earth. The distinguishing characteristics of small nuclear explosions are regional in
nature. Therefore, the features that characterize such events are not transportable from
region-to-region around the world. Certainly, in many regions there is no previous data
on nuclear tests. Furthermore, in many regions, little information is available on non-
nuclear events.

Wang, Woodward, Gray, Wiechecki, and Sain (1996) frame the problem of
detecting nuclear events in terms of detecting outliers (nuclear events) from a mixture
population (earthquakes, mining explosions, etc.) Specifically, the authors assume that
the training data is a sample of size n from a mixture distribution whose density is given
by

m
flx) = Xpigi(z; pi, Z) 1)

i=1
where m is the number of components in the mixture, g;(x; pi, 3;) is the density
associated with the ith component, the p,, i = 1, ..., m are the mixing proportions, and z
is a d-dimensional vector of feature variables. A typical scenario might be the case in
which the mixture population consists of events associated with earthquakes and mining
explosions. The authors developed a modified likelihood ratio test that required no
distributional assumptions concerning the outlier distribution. This is a useful practical
solution because of the lack of regional training samples for nuclear events. Using the
bootstrap to model the distribution of the test statistic and calculate critical values, the

authors showed that this test has essentially as high a detection probability as the standard



likelihO(;d test in which complete information concerning the distribution of the outlier
population is known.

However, Wang et al. (1996) made assumptions concerning the training sample
that may not be appropriate in practice. Specifically, it was assumed that the associated
source component population is identifiable forny, < n members of the training sample
where ny, > 0. Letting n; denote the number of labeled (i.e. the source of the event is
known) observations associated with component %, the authors assumed that the n;,

i =1, ..., m are random variables following a multinomial distribution and that they
contain information about the mixing proportions. The parameters are estimated via the
EM algorithm (see McLachlan, 1982, Redner and Walker, 1984, and Dempster, Laird,
and Rubin, 1977), and this algorithm further assumes that each n; is sufficiently large to
provide initial estimates of u; and X;.

In practice, no labeled (ground truth) data may be available, and it may well be
the case that we may not even know the number of component populations in the mixture
distribution of the training sample. Also, it often occurs that some data will be missing,
i.e. we will not always have all features measured at each of the events in the training
sample or in the potential outlier. Finally, in a relatively new region, the training sample
may actually contain a few unusual non-nuclear events (malfunctioning ripple-fired
mining explosions, mine collapses, etc.) that do not belong to any component population
of the appropriate mixture distribution.

In this report, we study the problem of detecting a nuclear event or other rare or
unusual seismic signals in new or relatively unexplored regions for which training
samples do not satisfy the assumptions imposed by Wang, et al. (1996). An outlier
detection procedure which is appropriate for the setting described in the preceding
paragraph is described in Section 2. In Section 3, we discuss the results of a simulation
study designed to examine the new outlier detection procedures, and in Section 4 we

apply the procedures to actual seismic data.



2. The Procedure

In this section, a procedure is presented for detecting outliers in a region for
which limited information is available concerning the training sample of non-nuclear
events. We extend the work of Wang et al. (1996), to develop an outlier-detection

procedure that applies to the case in which no labeled training data are available in a

region.

(a) Data Types
(i) Known number of components and no missing data
Here we assume that the training sample is known to contain a fixed number of
event types (i.e. m in (1) is known.), and we assume that no data are missing. The event
groups in the training sample represent the types of non-nuclear seismic activity in the
region, e.g. earthquakes and mining blasts.
Let

X,.,.Xpell

1?

denote the training sample of size n from the mixture population. In the notation of
Redner and Walker (1984) the sample is of Type 1, i.e. it consists only of unlabeled
observations. A new observation, X1, is obtained, and given the training sample we

want to test the hypothesis
H() . Xn+1 € II

VS.

H1: Xn+1¢1—[.

The classical likelihood ratio test statistic is the ratio of the maximized likelihood
functions under Hy and H;. Under Hy we assume that X, is from the same mixture

distribution as X7, ..., X, that is the likelihood function under Hp is



(ﬁ F(Xs; ‘9)> f(Xnt156).
s=1

If h(z; ) denotes the density associated with the outlier population from which Xt s
sampled, where (3 is an unknown parameter vector, then the likelihood function under H,

is
Ly(6, B) = (Hf X370)> (Xn+15 B).

Difficulties arise when maximizing L since there is only a single observation from the
outlier population. To overcome these difficulties and to acknowledge the fact that little
information is known about the outlier population from which X; is sampled, Wang et al.
(1996) used a constant density h(z) = c over its practical (finite) support. We use this

approach here and let

n

=[] /(X6

s=1

which is the likelihood based on the training sample X, ..., X, from the mixture, and we
define a simple modified likelihood ratio test statistic
sup Lo(6)
W —_ e (2)

sup T 1(9) ’
00O

where © is the entire parameter space. It is easily seen that the departure of X1 from f

will reduce sup Lo(6) making W smaller. Hence, the rejection region is of the form
6eco

W < W, for some W, picked to provide a level « test. Since the null distribution of W
has no known closed form, we use the nonparametric bootstrap to approximate it.

Specifically, B bootstrap samples are obtained, b = 1, ..., B. Each bootstrap sample is



obtained _by resampling from the training sample to obtain a sample of size n + 1, and for
each bootstrap sample the test statistic W is obtained where b = 1, ..., B. We then
define W, to be the (100a)th percentile of the W;'. Specifically, if o = j/(B + 1), then
W, is the jth smallest value of {IV;} bfl (see McLachlan, 1987). For a discussion of
the nonparametric bootstrap when some data are labeled, see Wang et al. (1996).

It should be noted that the maximum likelihood estimates involved in evaluating
(2) are obtained using the EM algorithm (McLachlan, 1982 and Redner and Walker,
1984). This procedure is iterative in nature and requires initial values of the parameters
estimates. Additionally, under the present scenario it is assumed that no initial estimates
for the parameters, p; and X;, of the component distributions or the mixing proportions,
p;, are available. Wang et al. (1996) assumed that a sufficient amount of labeled data are
available to provide initial estimates. In our setting, this information is not assumed to be
available and a clustering approach is used to group the data into distinct classes (see
Appendix for details) from which initial estimates can be obtained. The initial estimates

are then taken from the data assigned to each of the unknown classes.

(i) Number of components unknown and no missing data
It will often be the case that the number of components, i.e. distinct classes in the

population of the training sample will not be known. In this section, we propose a
modification of the procedure in (i) which is appropriate when the number of components
is unknown. We consider the use of Akaike's AIC (Akaike, 1974) for purposes of
determining the number of components m in the mixture. The use of AIC has been
considered in this setting by Sclove (1983), Bozdogan and Sclove (1984), Redner,
Kitagawa, and Coberly(1984), and Gray, Woodward, and McCartor (1989). Specifically,

form =1, ..., M we calculate

AIC(m) = — 2In(Lpez(m)) + 2(# of free parameters)



where Lynqz(m) is the maximized likelihood of the training sample under the assumption
that there are m components and M is a sufficiently large integer. Ly, (m) is obtained
via the EM algorithm as discussed in the previous section. AIC imposes a penalty based
on the number of parameters, and it should be noted that in the case in which the means,
covariances and mixing proportions are unknown and the feature vector is of order d,
then there are md + md(d + 1)/2 + m — 1 free parameters so that even for relatively
small d, the penalty increases rapidly as m increases. Foreachm,m =1, ..., M, we
use the clustering discussed previously to obtain m initial clusters to provide starting
values for the EM algorithm from which L, (m) is obtained. AIC is calculated for

m = 1,..., M, and the number of components, maic, associated with the minimum AIC
is chosen. The test statistic for the data, W, is then calculated as in (2) based on maxc
components.

To obtain the distribution of W, we again use the nonparametric bootstrap. The
bootstrap samples are selected as before, and for the bth bootstrap sample we find
m A:;C (b) using AIC and calculate W ; on this basis. We then take Wy, to be the (100c)th
percentile of the Wy, b =1, ..., B as before.

It is well known that in general AIC does not provide a consistent estimator of the
model order, and that the selected model order has the tendency to increase as sample size
increases thus leading to overly complicated models. To compensate for this, in the
simulations and data analysis in the next sections, and as an alternative to AIC we

consider the use of BIC (Akaike, 1977) given by

BIC = — 2In(Lmaz(m)) + In(n)(# of free parameters) .



BIC'imp;)ses a more severe penalty than does AIC and in some cases provides a
consistent estimator of the model order (e.g. Hannan, 1980).

It should be noted that in the case of mixtures, the regularity conditions for
— 2In(L) to have its usual asymptotic chi-square distribution do not hold (see e.g.
McLachlan and Basford, 1988). Despite the fact that AIC has been used successfully in
mixture settings by several authors listed previously in this section, Titterington, Smith
and Makow (1985) have shown that the theoretical justification of the use of AIC or BIC
relies on basically these same regularity conditions.

In Section 3, we will investigate the use of AIC and BIC in order to determine

their actual performance in the context of the bootstrap-based likelihood ratio outlier test

considered here.

(iiiy Missing data

In either (i) or (ii) it may be the case that some of the data are missing. Miller,
Gray and Woodward (1993) studied outlier testing in the setting in which the training
sample is from a multivariate (non-mixture) population when some data are missing.
They considered the use of the EM algorithm versus simple mean replacement for dealing
with missing data, and their findings were that the performance of mean replacement (at
Jeast for no more than 20% missing) was comparable with the full EM algorithm at a
fraction of the computation requirements. Based on these findings, we considered the use
of a mean replacement strategy for dealing with missing data in the mixture setting
considered here. If z; = (i1, Ts2, .., Tia)' denotes the ith observation in the training
sample and if, for example, z; is missing, then in the non-mixture setting, mean
replacement consists of simply replacing this missing observation with the sample mean
of feature 2 across all sample values for which this feature was actually observed. In the
mixture setting, however, we would want to replace the missing x;> by the sample mean

of existing observations in the component to which observation z;2 belongs. When the



training s-ample data are labeled, then this procedure is easily accomplished. However,
when data are not labeled, an initial clustering is required in order to ascertain the
component to which ;2 most likely belongs. Obviously, this initial clustering must take
into account the missing data in such a way that the distance between two observations x;
and z; can be calculated even if one or both of x; and z; has missing data on some
features. Specifically, we use a procedure suggested by Dixon (1979) to calculate the

distance between z; and x; as

d
. d
d(i,5) = d—_'a;k}:ldi

where

4 = 0 if z; or z i, is missing
Zik — Tk otherwise

and where dj is the number of features missing in z; and z;. It can be seen that d(4, j) is
simply thé squared Euclidean distance between z; and z; whenever there are no missing
features in ; and z;. In order for this to be a reasonable procedure, it is important to
first standardize the data as mentioned in the appendix so that the (non-missing) data on
each feature have unit sample variance.

For a given number of components we perform the cluster analysis based on the
available data using the metric d(3, 7). Once the clusters are established using the k-
means algorithm, we replace a missing feature in a data value with the sample mean of
existing observations of that feature in the cluster to which the data value belongs. Once
the mean replacement is accomplished, then the likelihood ratio calculations can be
performed using the newly created "completed" data set. If the number of components is
known, then W is calculated from the "completed" data set. Note that the mean

replacement depends on the number of components assumed, so in the case in which the



number c;f components is unknown and AIC or BIC is used to estimate it, a separate
mean replacement will be required foreachm, m =1, ..., M.

In order to ascertain the distribution of W, the bootstrap is applied as before. It
should be noted that the resampling is done from the original raw data, and thus some of
the data in the bootstrap samples may be missing if this were the case for the original
data. In the case of known number of components, m, the bootstrap is analogous to that
used in (i). That is, for each bootstrap sample, m clusters are formed using the d(3, j)
metric, the corresponding mean replacement is done, and W ; is calculated using the
"completed" data. For the case in which the number of components is not known, the

AIC (or BIC) will be obtained for each bootstrap sample as in (i7).

(b) Cleaning the Training Sample

While it is assumed that the training data contain no nuclear events, the procedure
we propose includes an examination of the training sample for unusual events (i.e. events
which are in fact outliers themselves such as mine collapses) that should be removed
before the training sample is used for testing new, and possibly nuclear, events.

After the initial estimates are obtained, each point in the training sample is
considered individually by using the other n — 1 points as a pseudo training sample. The
modified likelihood ratio test developed in Wang et al. (1996) is used to test each point
and determine the probability that each point belongs to the assumed mixture population.
Any point with a significant result (very small probability of inclusion in the mixture -
say 0.01 level) at this phase is labeled as an outlier and is removed from the training data
set. After checking each point, the remaining points are then used as a "clean" training
data set for testing future events as potential outliers from the mixture population.

3. Simulations
In this section the effect of unlabeled data, unknown number of components and

missing data on the detection probability of the outlier test based on W is examined using

10



a simulation study based on the procedures described in Section 2. In the simulations of
this section, the training data are from a mixture distribution as in (1) with m = 2 and
where the component distributions are each bivariate normal. Specifically, components 1

and 2 are distributed

and (3)

respectively with p; = p2 = 0.5. For the simulation, training samples of size n = 60 are

generated from this mixture population, and outliers are generated from the populations

v((555) (s 7)) @
where k = 1, ...,9. InFigure 1, we show the contours of the mixture components along
with the outliermeans (1 + k — 5,1 —k+5), k=1, ...,9. Inthis figure, we also
show the contour of the outlier population for the case k = 2, i.e. the mean is ( — 2, 4)'.
All tests are based on an a = 0.05 nominal significance level.

In Table 1, we show the results for the case of known components and for various
degrees of labeling. The table shows detection probability results for the case in which
all training sample observations are labeled using the technique based on W. The
estimates shown are the proportion of the 1000 replications for which an outlier was
detected. In general, the lack of labeling information from the class labels of the training
data leads to no detectable decrease in detection probability as would be expected. This

suggests that in these types of settings, although lack of labeling may degrade our

11
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estir'nates- of the components of the mixture, it does not seem to have a dramatic effect on
the estimated mixture distribution itself.

Next, we consider the case in which the number of components is not known. We
generated 100 samples of size n = 60 from the mixture distribution in (3), and in Table 2
we show the number of clusters identified by AIC and BIC respectively where the
maximum allowable number of clusters is taken to be M = 4. In the table, it can be seen
that AIC does the better job of correctly identifying m = 2 as the number of components
while it rarely underestimates m and overestimates it 36% of the time. On the other
hand, BIC selected m = 2 only 49% of the time, underestimated m on 51% of the cases
and never overestimated it. These results are consistent with the discussion of AIC and
BIC in Section 2. In order to examine the implications on the outlier test of not knowing
the number of components, in Table 3 we show power corresponding to that shown in
Table 1 when m is unknown but estimated by either AIC or BIC. In these simulations,
we generated 100 replicates of size n = 60 from the two-component distribution in (3)
for which none of the observations were labeled and for which the number of components
was assumed to be unknown in the analysis stage. It can be seen in Table 3 that there is
some loss in power when compared to the known component, 100% unlabeled case in
Table 1. However, the powers are not dramatically smaller. The power results using AIC
and BIC are very similar. Additionally, the observed significance levels are slightly
higher than the nominal o = 0.05 level.

In order to examine the effect of missing observations, we simulate 100 samples
of size n = 60 from the mixture model in (3) where the number of components is

assumed to be known and where a percentage of the observations are taken to be missing.
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Table 1. Significance levels and power of outlier test with some data unlabeled and
number of components assumed to be known.

n = 60, 1000 replications

Training sample population : 2-component mixture in (3) with p; = p = 0.5
Outlier populations: specified by & = 1, ..., 9 as in (4)

k
% Unlabeled | Sig. Level | 1 2 3 4 5 6 7 8 9

0 062 1.00 | .979 | .799 | .260 | .031 | .249 | .756 | .983 | 1.00

10 074 1.00 | .979 | .796 | 282 | .037 | .291 | .768 | .977 | 1.00

25 .068 1.00 | 981 | .783 | .254 | .032 | 264 | .767 | .985 | 1.00

50 .061 1.00 | 980 | .790 | .255 | .032 | .249 | .758 | .985 | 1.00
75% .061 999 | .980 | .767 | 232 | .030 | .237 | .746 | .972 | 1.00
100 .066 1.00 | .986 | .761 | 261 | .032 | .251 | .747 | .981 | .999

S.E. .007 0.015

* Several of these (18) lacked sufficient data in a group for starting values.

Table 2. AIC and BIC selections of the number of components expressed as
proportion of 100 samples of size 60 from the 2-component mixture model in (3)
with p; = p, = 0.5

Number of components selected

1 2 3 4
AIC | .03 .61 .26 .10
BIC | 51 | 49 | 0.0 0.0

14




Training sample population : 2-component mixture in (3) with p; = p; = 0.5

number of components assumed unknown.

n = 60, 100 replications

Outlier populations: specified by k =1, ..., 9 as in (4)

Table 3. Significance levels and power of outlier test with all data unlabeled and the

k
Criterion | Sig. Level | 1 2 (3 |4 |5 |6 7 8 9
AIC .08 10 |.98|.701.27|.04(.21 |.70 | .96 | 1.0
BIC .09 10|98 |.75}.23|.01| .17 | .67 | .97 | 1.0
S.E. .02 .05

Table 4. Significance levels and power of outlier test with all data unlabeled,
number of components assumed known, and some data missing.

n = 60, 100 replications

Training sample population : 2-component mixture in (3) with p; = p2 = 0.5
Outlier populations: specified by & = 2, ..., S as in (4)

k
% missing | Sig. Level |2 {3 |4 |5
10 .09 991751 .27 | .02
25 12 991.73 .32 .04
50 19 10 .83 .35 .04
S.E. .02 .05

15




In Table 4 we see that the observed significance levels seem to be inflated above the

a = 0.05 level, especially for greater than 10% missing. The effect of the current mean-
replacement is to excessively reduce the within cluster variability. These results indicate
that if a substantial percentage of data will be missing, then improved procedures for
handling the missing data must be developed and tested. Possibilities include use of the
EM algorithm as was done by Miller et al. (1993) or a replacement procedure similar to
that used above but for which the missing value is replaced by something other than the

midpoint of the cluster.

4. Example using Seismic Data

The data for this example are based on an analysis of earthquakes and mining
explosions from the Vogtland region near the Czech-German border by Burlacu and
Herrin (1996). These data were taken from the ground truth database compiled by Grant,
et al. (1993). These measurements are new to the seismic community and involve fitting a
third order autoregressive process to the S wave. The power spectral density is estimated
and the strength and frequencies of the real and complex poles are calculated. These are
useful features since distributed surface explosions (i.e. ripple-fired mining blasts) tend to
be lower frequency with a sharper spectrum (strong pole) and earthquakes tend to have
higher frequency and a more distributed spectrum (weak pole). These features are
incorporated into a promising screening process to identify mining blasts. In the analysis
here, the complex frequency and pole strength associated with an AR(3) fit to the data are
used as feature variables.

Table 5 contains information on the events used in this study and Figure 2 shows
a scatter plot of the complex frequency and pole for each event (plotting characters
indicate event number). Note that event number 25 is listed in the ground truth data base
as an explosion, although some controversy has surrounded this event. For this example,

the ground truth information is not used. Rather, the source for each event is assumed to

16



Table 5. Information on the 27 Vogtland events

Event # | Date Lat(N) | Long(E) | Depth | M; | Y(kg) | Or.time | Q/X
1 031191 | 50.207 | 12.685 0 1.98 | 3,265 | 12:03:24 | EX
2 032191 | 50.207 | 12.685 0 2.05 | 3,982 | 12:04:15 | EX
3 032291 | 50.207 | 12.685 0 2.03 | 2,835 | 12:33:25 | EX
4 032391 | 50.207 | 12.685 0 1.99 | 2,025 | 12:00:56 | EX
5 032491 | 50.296 | 12.225 | 129 | 2.18 - 05:05:04 | EQ
6 032491 | 50.279 | 12.228 | 129 | 1.50 - 05:35:21 | EQ
8 032491 | 50.278 | 12.220 | 124 | 1.65 - 09:38:33 | EQ
9 032491 | 50.294 | 12.223 | 12.7 |2.07 - 14:33:28 | EQ

10 032491 | 50.293 | 12.224 12.5 1.80 - 15:00:45 | EQ
11 032491 | 50.293 | 12.224 9 1.73 - 15:41:04 | EQ
12 032591 | 50.298 | 12.222 | 129 |237 - 14:54:14 | EQ
13 032591 | 50.292 | 12.213 12.4 1.54 - 22:31:46 | EQ
15 050291 | 50.207 | 12.713 0 1.93 | 3,575 | 11:06:10 | EX
19 051991 | 50.360 | 12.371 0 2.06 - 03:22:10 | EQ
20 052391 | 50.207 | 12.713 0 2.12 | 3,135 | 11:01:05 | EX
21 052591 | 50.207 | 12.713 0 2.13 | 3,135 | 11:01:29 | EX
23 052891 | 50.207 | 12.685 0 2.01 | 3,575 | 11.03:51 | EX
24 062091 | 50.207 | 12.685 0 1.98 | 1,998 | 11:01:17 | EX
25 062091 | 50.293 | 12.803 0 1.80 - 11:45:35 | EX
26 062291 | 50.207 | 12.685 0 2.15 12,886 | 10:58:34 | EX
27 062791 | 50.207 | 12.685 0 1.93 | 3,515 | 11:04:40 | EX
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be uhknc;wn, although it is assumed that the data set is composed of observations from
two sources (earthquake and mining blast). Finally, it is also assumed that no nuclear
events are present in the training sample.

Figure 3 shows the result of the cluster analysis. The members of each cluster are
indicated on the plot (as a "1" or a "2") as well as a 95% contour for each component
normal distribution using the parameters estimated from the results of the cluster analysis.
Note that the labeling of clusters is arbitrary and does not indicate the source of the event.
These data show a clear separation between the groups. Hence, only one iteration of the
cluster analysis is necessary, i.e. no observations in the training sample were determined
to be outliers.

Figure 4 shows the results of the leave-one-out testing procedure. Plotted are the
p-values for being in the mixture associated with each frequency and pole pair (plotting
characters indicate p-value). Note that only event 25 shows a significant result (p-
value < 0.01), which leads to the conclusion that event 25 is an outlier to the mixture
distribution of earthquakes and explosions. Results for all other points support their
membership in the mixture and are consistent with the ground truth information.

New events in this region should now be tested using this "clean" data. Figure 5
shows contours representing effective rejection regions (o = 0.1, 0.05, 0.01) based on this
training sample. Note that these regions mirror the shape of the distributions suggested by

the data.

5. Concluding Remarks

In this report, we show that outlier detection based on a mixture training sample
of totally unlabeled data can be successfully accomplished even when the number of
components is not known and when some data are missing.

The focus of the current report is on the case in which all data are unlabeled

whereas Wang et al. (1996) assumed that some (or all) of the data were labeled with
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regard to- their component membership. However, missing data may still be a problem in
the case in which some or all labeling is known. If all data are labeled, then it is clear that
mean replacement (or an alternative algorithm) for an observation in component  would
be based on existing data from the sampled values in the ith component. When some
data are labeled and some are unlabeled, then missing data in a labeled observation would
be handled as just mentioned for the fully-labeled case. Each unlabeled observation is
assigned to the component to which it is closest (using d(z, 5)). Once component
membership is thus established, a missing value for an unlabeled observation is replaced
using the labeled data in that component. It should be noted that in this discussion we
have assumed that if some or all of the data are labeled, then the number of components is
known.

It is desirable to assign labels to events in the training sample after the clustering
and estimation of component parameters is accomplished. We first consider the case in
which the training data consist of two components. Each point in the training sample is
tested as an outlier from each of the two training sample components and corresponding
p-values obtained are associated with each component. Based on these p-values, each
training sample member would be assigned a component membership or will be left
unassigned when membership is not clear as defined by some predetermined p-value.

Use of tests based on a focused critical region can be used to increase our ability to assign
component membership based on the position of the training sample value being tested
with respect to the locations of the corresponding component centroids. When the
distribution of the training sample has more than two components, the testing can be
based on considering the components two at a time. Actual "naming" of components can

be done by an analyst, or by a defined statistic and/or auxiliary variables.
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Appendix: Clustering

Clustering is the process of grouping similar objects on the basis of characteristics
of the objects. For a general treatment of the subject, see, for example, Hartigan (1975),
Jain and Dubes (1988), and multivariate analysis texts such as Seber (1984).

Two basic types of clustering algorithms are used here. Before implementing
either of these clustering techniques, we will first standardize the data so that the (non-
missing) data on each feature have zero sample mean and unit sample variance. The first
clustering technique considered is hierarchical clustering, which is an iterative technique
involving the grouping of smaller clusters into larger ones until the desired number of
clusters has been achieved. The second type partitions objects into non-overlapping
groups by setting the number of clusters, choosing initial locations of the clusters, and
then assigning points to one of the groups according to some pre-specified criterion. The
k-means approach of Hartigan (1975) is an example of this second type of clustering. We
take a two-stage approach to clustering. First, a hierarchical approach is used to obtain
initial parameter estimates of the clustering. Then, in some cases, a procedure similar in
nature to the k-means approach is used to refine the parameter estimates.

The hierarchical clustering algorithm begins by considering each of the n data
points as an individual cluster. Then, the two points nearest to each other are combined to
form n — 1 clusters. The procedure continues by combining or fusing the two clusters
that are the most similar at each iteration. Similarity is a distance measure that can be
calculated in a variety of ways. We use the nearest centroid method, which measures
similarity as the distance between the centroids or means of the points in each cluster, due
to the fact that it is more robust than single and complete linkage measures.

The hierarchical approach can be effected by extreme observations, particularly in

situations where there is some overlap in the distributions of the data. For example,
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conéider-the data presented in Figure 6. Here, 60 observations are generated from two
bivariate normal distributions with equal probability. These distributions are indicated by
the ellipses given in the first plot of Figurek6. The second plot shows the results of the
hierarchical approach. Note the small cluster near (2,4) whose observations are labeled on
the plot as a '2". At the last step, the number of clusters is reduced from three to the
required two. Since the distance from this smaller cluster to the other two is greater than
that between the other two, it remains an individual cluster and the others are joined
together. Clearly the parameter estimates from such clusters would be biased due to this
probable poor clustering.

To prevent such problems, the second phase of the clustering is applied. Namely,
each object is checked to see if it has been clustered in a reasonable way. If not, the
object is reassigned to a more appropriate cluster. Many measures have been considered
for determining the appropriateness of the cluster labels. However, these are often quite
complex and difficult to compute. In this work, we use a precursor to the £-means
approach suggested by Forgy (1965). The distance between each object and the cluster
centers is calculated. If the object is not assigned to the cluster to which it is closest, then
it is reassigned to that cluster. After all objects are checked in this fashion, parameter
estimates are updated and the procedure is repeated until no objects are reassigned.

This reassignment tends to produce clusters of roughly equal size, so care must be
used when the expected proportions of observations in each cluster are not equal.
However, the parameter estimates are used merely as starting values for the EM
algorithm which is fairly robust to initial parameters estimates. As a final note, if the
clusters are sufficiently separated, then the reassignment will be unnecessary.

Finally, it is possible that the clustering algorithm will return one or more clusters
that are considerably smaller than is reasonable, even with the reassignment. In our
implementation, these small clusters are temporarily set aside, and the remaining data are

used to form clusters and estimate initial parameters.
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Appendix'B

A NEW LOOK AT OUTLIER TESTS WITH MULTIPLE STATIONS

Wayne A. Woodward*, Suojin Wang**, HL. Gray*, and William H. Frawley™
* Southern Methodist University
**Texas A&M University

ABSTRACT

We address the problem of using regional seismic data to distinguish between nuclear
events and events such as earthquakes, mining explosions when events are observed at several
stations within a region. We use a bootstrap-based outlier testing approach to test whether a
suspicious event should be considered to be an outlier frorh the population of the training sample.
Because there may be several stations with several features measured at each station,
straightforward use of all data at all stations may result in variance/covariance matrices of large
order, e.g. as large as 80 x 80. Thus, it is important to develop data compression procedures
that, for example, combine results for a given feature across stations. The results in the current
paper extend the results of Fisk, Gray and McCartor (1995) and Gray, Woodward, and Yiicel
(1995). In this report, we develop a new set of weights for combining station information that
are shown to perform better in simulations than the minimum variance weights considered by
Fisk et al. (1995) and Gray et al. (1995). A "double-weighting" approach is also considered.

We briefly consider the case in which the population of the training sample is considered to have
a mixture distribution which allows for the existence of more than one type of non-nuclear event

in a region. i.e. earthquakes and mining explosions.
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1. Introduction

The problem of observing seismic events for the purpose of distinguishing between
nuclear events and events such as earthquakes, mining explosions, etc. has been studied by
several authors. The usual scenario in which this problem has been considered is to consider the
existence of a training sample of non-nuclear events in a region and to test new and possibly
suspicious events as possible outliers from the population of the training sample. Baek, Gray,
McCartor, and Woodward (1992) use a bootstrap likelihood ratio test to determine whether an
event should be considered to be an outlier from a single multivariate population where
measurements were made at a single station. Miller, Gray, and Woodward (1993) extend this
test to the case in which some data are missing. Fisk, Gray and McCartor (1995) and Gray,
Woodward, and Yiicel (1995) extended these results to cover the case in which readings are
obtained at multiple stations. Wang, Woodward, Gray, Wiechecki, and Sain (1996) consider the
problem of testing an event as an outlier from a mixture population which represents the realistic
scenario in which there may be more than one type of non-nuclear event in a region. The work
of Wang et al. (1996) allows for the training sample to represent a sample from, for example,
earthquakes and mining blasts; but this was based on data from a single station.

In this report, we consider the use of outlier tests when readings are obtained from
multiple stations. We re-examine the scenario considered by Fisk et al. (1995) and Gray et al.
(1995), and introduce a modification of the likelihood ratio approach employed in the papers

cited which is more suitable for multistation data when the outlier population is considered to be

a mixture of event types.
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2. Review of Previous Multistation Results
In this section, we assume that d features are measured on n events detected at m
stations. We let X jx; denote the measurement of the kth feature for the ith event in the training

sample measured the jth station. That is, for the kth feature, we have the following training data:

Station 1 ... Station m
Xk o Xkt

Xlkn kan

We use the notation X; = (X1, ... » Xmki)' to denote the m station readings for the kth
feature and ith event, X j; to denote the average of the n events measured at station j and feature
k,and Xy = (X1x, ..., Xmr)' to denote the vector of these averages evaluated at each of the m
stations. The m station readings for the potential outlier at the kth variable are denoted by
Uy = (Uk , ..., Unmi)'. For the present we consider the case in which the population of the
training sample is a single (non-mixture) multivariate population.

Several approaches were considered by Fisk et al. (1995) and by Gray et al. (1995) for

analyzing multistation data, and these will be briefly discussed here.

(a) Full Vector Approach
A full-vector approach was considered in which the d features at each of the m stations
are considered as a single vector consisting of md variables. In this approach the observation

vector for the ith event in the training sample is considered as an md x 1 vector of the form

X = (X11i, X12ir - > X1di» X21: X224 - s Xodi > Xm1i X m2ir v Xmdd -
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A new observation to be tested as an outlier is then a similarly configured md x 1 vector denoted

by

U = U, U2, s Uids o s U1, U2y «oo, Umd)’ -

In the full-vector approach considered by Fisk et al. (1995) and Gray et al. (1995), the training

sample {X;}7_, was considered to be from the density function f (-3 p1, ), where

fla; pa, ) = (@) F (B[ rezp{ - §(z — 1) =N e ~ pa),

i.e. they assumed that the feature variables have a multivariate normal distribution. Similarly,
the new U was assumed to have probability density f( - ; p2,X). Baek, etal. (1992) classify

U by testing the hypotheses

Hy: p1=p2
Hy: p1# po.

The generalized likelihood ratio is given by

)= Sup{gGQO}L(G; Xl, ceny Xn, U)
sup{GEQ}L(o; D ST Xy U)

_L(0o; X1, -, X, U) o
L(®; X1, ..., Xn, U)

where 50 is the Maximum Likelihood Estimate (MLE) of @ under the restriction that H) is true,
and § = {#1, B, f‘.} where 1z, and S are the MLE's of pyand 3 based on Xy, X3, ... , X»
and 7, = U. It intuitively follows that small values of A provide evidence against Hy, and thus

the generalized likelihood ratio test is to reject Hy if A < A(cr), where A(a) is chosen to provide
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a size antest.' In some cases it will be necessary to approximate the critical value A(a) using
bootstrap techniques. In the setting considered here, i.e. the populations are multivariate normal,
the above likelihood ratio test is equivalent to Hotelling's 72 and, in fact, T is proportional to
1/X. Recall, in the general case in which W71, ..., W, isa random sample from a multivariate
normal population having density f( -; p1, 3) and Zi, ..., Z,, is an independent random
sample from a multivariate normal population having density f( - ; p2, ), then Hotelling's 72
is given by

T = (1 +3)7 W -2)S, (W - 2)

n1 N2

where S, is the usual pooled estimate of the variance/covariance matrix

(nl—nfj‘l (W~ )W~ + (m —1>§ (2,-2)(2,-Z)
Sp = (n1+ng—2)

where W, = (W1, ..., Why,)’, etc. In our setting, i.e. n; = n and np = 1, this becomes
=14+ (X -U)SYX-U)

= (&)X -U)SH(X -D). 2

Here, S must be calculated entirely on the basis of the training sample since ns = 1, and in this

case S is simply the sample variance/covariance matrix based on the training sample data, i.e.

S (X,—-X) (XX
S — =1
(n1—1)
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(b) Miizimu;n Variance Weighting

In the full vector approach, discussed in (a) no attempt is made to account for the fact that
the same d variables are being measured at the m stations. Fisk et al. (1995) and Gray et al.
(1995) considered a minimum variance weighting in an attempt to combine features across
stations to reduce the dimensionality of the problem by taking advantage of the correlation
structure between stations. In particular, they constructed a new "feature", Y}, associated with

feature k& which is a linear combination of feature k at each of the m stations. We use the

notation
m
}fki = ijkakia 1= 17 ceey T
=1
The weights wg = (wik, ..., Wmk)' Were chosen to be those which minimize the variance of Yy;

subject to the constraint that the weights sum to one. Theoretically, the weights are given by
wp =X ‘;cl 1/1'%S _kl 1 where 1’ = (1, 1, ..., 1) and 3 is the variance-covariance matrix of

X3i. In practice 3 will not be known and will be estimated by the usual sample variance-

covariance matrix, S, based on events ¢ = 1, ..., n. Thus, the weights are
wp=S11/1'S ML 3)
This procedure creates the new d-dimensional vector Y; = (Y13, ..., Y4)', i =1, ..., n, and the

potential outlier is weighted using these same weights, i.e.

m
Wc = Z:l’wjk Ujk.
]:=
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This weighting reduces the dimension from md variables to d variables which may be important
when the number of features and stations becomes large. The outlier detection is then based on a

likelihood ratio as before but calculated using only the d new variables.

(c) Separate Tests Based on Each Station Individually

An obvious strategy for using station information at m stations is to declare an event to
be an outlier if any of the individual station-based tests finds the event to be an outlier. Fisk et
al. (1995) and Gray et al. (1995) examined the use of a sequence of individual station tests with a
Bonferroni-based adjustment to assure that the overall significance level is no larger than a.

Based on simulation studies, Fisk et al. (1995) and Gray et al. (1995) found that the
power of the full-vector approach was consistently competitive with the other procedures. On
the other hand, while the minimum variance weighting procedure could produce results with
higher power than the full-vector approach in numerous cases, the results could be very poor
since the weights were really not selected optimally for the purpose of outlier detection.

In Section 3, we derive station weights for the purposes of improving outlier detection.
We also consider the use of a second-stage weighting procedure. Simulation results based on
these techniques are also presented. In Section 4, we consider the problem of using multiple
stations in outlier detection in which the population of the training sample is a mixture of

component populations.

3. New Data Compression Procedures

In this section we consider two new procedures for data compression. While the full-
vector approach considered in the previous section works very well, its implementation will be a
problem when dimensionality becomes large. Once the monitoring procedure is operational, it
may not be unusual for there to be as many as 5 to 10 stations that detect some events, and the
numbered of features measured could realistically be as large as 8 or 9 so that the

variance/covariance matrix could be 40 x 40 to 90 x 90. For this reason, it is desirable to
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develop a data compression procedure, and in this section we propose compression techniques

which give results that are similar to those of the full-vector approach.

(a) New station weights
For the kth feature we consider weights oz = (a1, .., 0mi)’ to be determined as

follows. Define the distance measure, D (), between the compressed training set data,

m — m
> o X j» and the compressed potential outlier, S apUs, by
j=1 =1

A (Xe-UR)Y
Di(e) = (1+3)a, Sra,,

where S}, is the sample variance/covariance matrix of Xx;. The @, that maximizes Dy (c) is
a, xS _kl( X — Uyg). These weights have the intuitively appealing feature that they
maximize the distance between the potential outlier and the training data. Note that for each k,
the compressed feature is univariate. This idea was originally used by Fisher (1936) in defining
his now famous linear discriminant function.

We first consider the case in whichd = 1, and welet @ ' Xy; = Y15, =1, ..., nand
&'U; = V5. Now, Y3;, i = 1, ..., n is a sample from some univariate distribution, and Vj is a
single observation from its univariate distribution. In the Appendix, we show that Hotelling's 7
(actually the square of the Student's ¢ in this univariate case) for testing py = pv is numerically
equivalent to the T2 that would be calculated using (2) for the full-vector approach based on the
original data.

Thus, we see that in the case d = 1, the use of @ weights produces a calculated T? value
that is the same as that which would be calculated using the full-vector approach. Equivalently,
the likelihood ratio, ), is the same in each instance. Thus, if the distribution of A is obtained
using bootstrap techniques, the two procedures (full-vector on original data and compression

using &) are equivalent. When d > 1 there is not a corresponding equivalence, but it is
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intuitively e);pected that use of the @ weights will produce compressed data that behaves in a
manner similar to that of the full-vector approach and thus that use of the & weights will be
preferable to the use of minimum variance weights @ in (3). One difference between the full-
vector approach and the use of ; weights for the case d > 1 is that the variance/covariance
matrix for the compressed data is of order d x d as compared to an md X md
variance/cox?ariance matrix using the full-vector approach. It should be noted that since the
results of the transformations (either using @ or @) need not be normally distributed even though
the original data may have been normal since the weights are not constant but are based on the

data. For this reason, we recommend use of bootstrapping to obtain the appropriate critical value

of )\ for transformed data even if the original data were normal.

(b) A two-stage compression procedure
A second approach involves a second-stage compression across variables. We note that
a! (X — Uy) is a multiple of Hotelling's T? for the kth feature. We will denote this quantity as
k

T 2 We then consider the random variable Z = (T’ f, s TS)' and calculate

Q = max(8' 2)%B'S2P
B

=25}z )

as an overall measure of how large the T';'s are where 57 is an estimate of =z and where
(analogous to before) the weights that produce the maximum are E =5 _Zl Z. It should be
noted that large values of @ suggest that the observed value is an outlier, and we will use a
bootstrap approach to approximate its distribution as before. Also, the original sample of size n
produces only a single observation on Z, and because of this we use a separate bootstrap step to
calculate & z. Specifically, we obtain B; nonparametric bootstrap samples of size n + 1 from

the original training sample, and from each of these samples we calculate Z. We then let 53 z be
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the sample vériance/covariance matrix. We then take By nonparametric bootstrap samples of
size n + 1 from the original training sample in order to find the null distribution of ¢ which is
calculated as in (4) using the > z obtained from the first bootstrap step. Specifically, for
purposes of the hypothesis test, the 100(1 — )th percentile of @™ (b), b = 1, ..., By is found.
Ideally, given a bootstrap sample for which @ is to be calculated, a second bootstrap sample
would be taken from this sample in order to obtain a bootstrap-based estimate of %z specific to
that sample. However, this procedure would be very computationally intensive, and we have
thus chosen the faster method of simply calculating ) z once and using this estimate for each of

the B bootstrap samples. We will examine its performance using simulations.

(c) Simulation Results

In this section we show simulation results associated with the testing procedures in
Sections 2 and 3. In particular, we consider the case in which there are m = 2 stations and k = 2
features. That is, the training sample consists of data values X; = (X115, X12i, X215, X22:) ,
i =1, ..., n where as in Section 2a the first and second subscripts represents station and feature
respectively. In the simulations we simulated a training sample of size n = 60 along with a
single observation from the specified "outlier population." Each test is utilized to determine
whether the observation from the outlier population is determined to be an outlier. One thousand
repetitions of this process were obtained, and the estimated power, i.e. proportion of times the
outlier was detected, is given in Table 1 for each test for a variety of multistation scenarios. The
4 x 4 variance/covariance matrices associated with X are shown in the table. Each training
sample mean is (0, 0, 0, 0)' and in our simulations, the variance/covariance of the outlier

population is taken to be the same as that of the population of the training sample. For each
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TABLE 1. Significance Level and Power Results

n = 60, 1000 replications

QOutlier Mean Combined Full

MinVar ~ New Double Variance/Covariance
Configuration Individual Vector Weights Weights Weighting Matrix
1 050 044 059 050 1065
2 601 571 388 612 546 100 0
3 580 547 418 573 564 100
A 4 495 551 686 579 588 10
5 481 571 709 599 581 .
6 813 873 949 888 858
1 052 045 038 063 054
2 170 170 .086 184 178
3 573 544 570 567 527 1 000
B 4 320 352 480 365 377 100
5 343 364 492 405 399 40
6 629 644 783 684 674 1
1 058 051 051 058 063
2 355 343 265 364 400 1000
3 359 341 251 367 367 400
C 4 142 147 198 166 166 10
5 480 520 684 554 622 4
6 391 671 789 693 677
1 047 057 .060 064 059
2 585 718 314 730 699 10 5 0
D 3 600 697 336 724 665 ( 1 0 .5
4 435 376 3512 406 416 1 0
5 424 374 493 410 432 ]
6 747 693 828 716 674 )
i 046 048 053 053 058
2 544 896 249 913 910 10 75 0
E 3 359 915 273 919 903 10 o
4 375 315 422 332 379 1o
5 392 350 464 363 360 :
6 683 589 744 633 605
1 045 048 049 052 067
2 347 339 241 417 495
3 392 398 259 459 477 1.5 .25 0
‘ F 4 552 512 665 535 492 1 0 .2
| 5 558 527 663 548 469 1.9
6 612 627 753 699 668 1
1 044 044 053 048 079
| 2 478 551 253 604 610 1 25 5 0
3 465 521 269 573 621 1 0 0
G 4 456 391 525 425 453 1 .95
5 435 381 507 416 402 1
6 645 614 767 670 651
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variancé/cov:ariance setting, six different mean configurations are considered for the potential
outlier:

1: (0,0,0,0)
2: (0,0,2,2)
3: (2,2,0,0)
4: (0,2,0,2)
5: (2,0,2,0)
6: (2,2,2,2)
Obviously, mean configuration 1 is simply the mean of the training sample population so that
estimated "power" results in this case are actually estimates of the significance level of the test.
All tests were run at the nominal o = 0.05 level, and all bootstrap procedures were based on 199
replications. In the table, it can be seen that all tests produced reasonable significance level
results for all variance/covariance scenarios considered and that the full vector, maximum
separation weights and the double weighting procedures all produced similar results. In fact, for
several cases, the use of maximum separation weights and the double weighting produced power
results higher than those for the full vector approach. As was observed previously, the minimum
variance weights can at times produce power results that are larger than those of the three
schemes just described. However, the power results using minimum variance weights can be
very poor. See, for example, mean configurations 2 and 3 in scenarios D and E in the table. In
these situations it is seen that the "combined individual" (i.e. separate tests using Bonferroni
adjustment) tests are also inferior to the new weighting procedures given here since these
weighting procedures take advantage of the correlation structure in the population of the training

sample when testing a potential outlier.
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4. Multistation Data with Mixture Training Samples
In this section we consider the scenario in which there may be more than one type of non-
nuclear event in a region. Wang et al. (1996) consider this situation by assuming that the training

data is a sample of size n from a mixture distribution whose density is given by

f(z) = épz’gi(mQ iy 2i) 6y
where m is the number of components in the mixture, g;(z; i, 3;) is the density associated with
the ith component, the p,, 2 = 1, ..., m are the mixing proportions, and = is a d-dimensional
vector of feature variables. For example, the mixture population might consist of events
associated with earthquakes and mining explosions. The authors developed a modified
likelihood ratio statistic, W, and a related test that required no distributional assumptions
concerning the outlier distribution. The distribution of W under the null is unknown, so
bootstrap procedures were developed to find an appropriate c-level critical value. The statistic

W was calculated in such a way that small values of W were suggestive of an outlier. Let n;,

m
i = 1, ..., m denote the sample sizes from each of the component populations so that 3 Jn; = n.
i=1

It is assumed that the training sample is selected in such a way that the n;s contain information
about the mixing proportions. Wang et al. (1996) assumed that some of the data were labeled,
i.e. that the source components for these values are known. Sain, Gray, and Woodward (1996)
have extended these results to the cases in which all data are unlabeled and to the case in which
even the number of components is unknown. In this section we consider two multistation

approaches for the mixture model case.

(a) A mixture-model approach
Recall that in Section 2b we discussed an approach that was based on first finding
"optimal" station weights and then weighting across variables (i.e. a weighting of T? values).

Unfortunately, in the mixture setting we cannot find the weights analogous to a for optimally
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combining st-ations for purposes of separating the outlier population from the population of the
training sample. However, for a given feature &, one can consider the readings from the m
stations to be an m~-dimensional "feature" vector on which the modified likelihood ratio test of
Wang et al. (1996) can be applied to obtain W (k) which can be thought of as the result of
combining station information somewhat analogous to obtaining a linear combination of the data
from the m stations in the non-mixture case. Now, 1/ (k) behaves like T2in that large values
are suggestive of an outlier. A procedure somewhat analogous to that in Section 3bistolet

H = (1/W(1), ..., 1/W(d))'and calculate Dy = H’g;IIHas an overall measure of how
large the 1/W(k)'s are, where again, )| g is an estimate of X g and must be calculated using a

second bootstrap step.

(b) Closest component approach

A second possible approach for the mixture case would be to locate the component in the
mixture that is "closest" to the outlier. Then, non-mixture techniques such as those given in
Sections 2 and 3 could be used to determine whether the potential outlier should be considered to

be an outlier from this closest component, and thus an outlier from the mixture.

5. Concluding Remarks

We have seen that in the non-mixture training sample scenario, the new weighting
techniques produce power results that are competitive and sometimes better than those for the
full-vector approach in all cases considered. Thus, we recommend the use of these new
procedures when the number of stations and features is large. The procedure described in
Section 4 for the mixture model case is currently being investigated using simulations. These

results will be reported at a later time.
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Appendix

In this Appendix we assume that d = 1 and that the random variables Y;; = @ ' X1,
i=1,..nandV; =&'U;wherea, = S —kl( X, — Uy) as developed in Section 3a. In this
case, Hotelling's 72 for testing uy = uy based on the transformed data is numerically equivalent
to the T2that would be calculated using (2) for the full vector approach using the original data.
Now, Hotelling's T2 (actually the square of Student's ) for testing Uy = Uy based on the
transformed data is

T2 = (27)(F1 - VO)'S7 (T2 - V7).
where Sy is the sample variance of Y3;, i = 1, ..., n. Now, Sy = @' Sa where S is the sample
variance/covariance matrix of the original data based on the training sample alone and
¥, - Vi = & (X1 — Us). Thus, Hotelling's T'> is given by

72 = ()8 (% — 02 (@58) & (X, — U)

(725){[Fr — 00571 (Fa - 0)] [(Ra = US4 (X1 — U] o
(%2 — 0 s-4(% - 0]}

= (%) [ - ' U X - U))

which is Hotelling's T? for the original data as given in (2).
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